Appendix A

Proof of Proposition 2

Proposition 2. The extended greedy approach provides a
(1- é)-approximation to a WMC with a negative weight.

Proof. Let s* be the optimal solution of the WMC. Let s°
and s> be the optimal solutions of WMC? and WMC> of
the extended greedy approach, respectively. Let c*=®(s*),
c?=®(s"), and c>*=®(s>). Let the target with negative
weight be target i ™.

We first prove the following two claims.

Claim 1. If ¢}, = 0, i.e, target i is not covered by the
optimal solution, then s is also optimal to the WMC.

Proof of Claim 1. Since w;+ is replaced with —oco in
WMC®, target ™ must not be covered by the optimal so-
lution of WMC®. Thus ¢f = 0. We have ), w; - ¢f =
Dipir Wi e and Y wi -0 =37, 0 w; - ¢, Suppose
that s*° is not optimal to the WMC. We have }, w; - ¢; >
> wi -5, and

Z w; - ¢ + (—00) - ¢y = Zwi~cf > Zwlcfo =
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This means that s* is a better solution to WMC® than s*°,
which is a contradiction. d

Claim 2. If ¢, =1, i.e., target i is covered by the optimal
solution, then s° is also optimal to the WMC when w;+ < 0.

Proof of Claim 2. Suppose s’ is not optimal to the WMC.
We have Y, w; - ¢f > >, w; - . Thus,
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The last inequality holds since w;+ - (¢} — ;) < 0, and it
indicates that s* is a better solution to WMC? than s°, which
is a contradiction. O

Therefore, if ¢, = 0, the optimal solution of WMC>
is optimal to the WMC, and obviously, the objective values
induced by this solution are the same for these two problems
since the two problems only differ in the weight w,+, which
is however not counted in the solution. Therefore, the greedy
algorithm provides a (1 — 1) approximation to WMC™ (as
all weights in WMC®® is non-negative) and furthermore the

WM, i.e.,
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. S . >

OPT + |w;+]| e

On the other hand, if ¢, = 1, the optimal solution of
WMC is optimal to the WMC. In this case, the optimal ob-
jective value of WMC? is |w;+ | larger than that of the WM-
C,i.e., OPT + |w;+| = OPTy. For the greedy solution of
WMC?, since target i can be either covered or uncovered,
we have GRD = GRDy — |w;+| or GRD = GRD,, and
in both cases GRD + |w;+| > GRDy. Since GRD, pro-
vides a (1 — i)-approximation to OPTj (as all weights in
WMC is non-negative), we have GRDy > (1—1)-OPTy,.
It follows that
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Therefore, we have in both cases OPTHTw ] >1—<,ie,
1 . .
a (1 — )-approximation. O

Proof of Proposition 3

Proposition 3. Let the polytope defined by Eq. (16) be C,
and let the polytope of ¢ defined by Egs. (17)~(20) be C'.
ThenC C C'.

Proof. Suppose € is a vector in C. There must be a mixed
strategy x such thatc = g 25-®(s). Lets = ) _ s s+
s. It follows that ¢ and s satisfies Eqs. (17)—(20) since ®(s)
and s satisfy Egs. (10)—(13). ]



Appendix B

A +-approximation of a Naive Greedy
Approach

As mentioned in the paper, a naive greedy approach to deal
with a WMC with a negative weight is to keep track of the
total weight in each step of the main loop (Lines 2-4, Al-
gorithm 1), and choose the maximum record as the final so-
lution. This approach provides a %-approximation to the
WMC. The approach is depicted with Algorithm B-1 be-
low, and the approximation ratio is demonstrated in Propo-

sition B-1.

Algorithm B-1: A naive greedy approach to deal
with a WMC with negative weights

Input: An adjacency matrix A = (a;;)
A set of weights w = (w;)

Output: A pure strategy s*
17+ 0,s<0,c+ 0
2 7* 0,8 + 0;
3 fork =1t K do
4 i< arg max{i|s; =0} Z{] |a;j=1and c;=0} Wy
5 T<—r+2{j|a;j:1andcj:0} Wy
6 5; ¢ 1, ¢+ O(s);
7 if » > r* then r* < r, s + s*;

Proposition B-1. Algorithm B-1 provides a %-appr()ximat-
ion to a WMC with a negative weight w;+ < 0, and % isa
tight bound.

Proof. Let OPT denote the objective value of the optimal
solution. Let GRD denote the objective value of of the so-
lution returned by Algorithm B-1. Let x; denote the total
weight of new targets covered by Algorithm B-1 with the /!
set that it picks for all [ = 1,..., K. Note that the solution
of Algorithm B-1 may contain less than K sets, say K’ sets.
Without loss of generality, we let x; = 0 for all | > K. Let
Y = 2321 x;, i.e., the total weights covered by Algorith-
m B-1 with the first [ sets it picks, and let z; = OPT — y;.
We also let yo = 0 and zg = OPT.

Claim 1. 771 + |w;+| > %
Proof of Claim 1. Suppose the optimal solution chooses k <

K sets S1,...,S*. Let S} denote the elements in S/ that
is yet not covered when Algorithm B-1 has picked [ sets.
Define w(S) = ),.qwi, i.e., the total weight of targets
covered by any set .S.

a) If it isnotinany of S}, ..., SF, we have w(Sl]) > 0 for
allj=1,...,k and Z§:1 w(S]) > w(Uf:1 S,J) = .
Thus there must be one set in S}, ..., SF, say S/, such

thatw(Slj) > 2L > 7, and furthermore w(Slj)Jr |w;+| >
214w, 4 |
—g.

b) If i* is in some of S},...,SF, we replace the negative
weight with 0 and thus have Z?Zl (w(S7) + |wi+]) =
w(U?=1 Slj) + |wi+| = 2z + |w;+]|. Similarly, there must

be some S/, such that w(Slj) + |wi+| > % >
Zl+|’LU1-+‘
—g.

Since in the (I + 1) pick Algorithm B-1 picks the set
with largest total weight of uncovered new targets, we have
x4 > w(SY), V5 = 1,..., k. This is also true if the so-
Iution of Algorithm B-1 picks less than K sets, since when
the total weight cannot be increased by selecting more sets,
the total weight of uncovered targets in each set must be no

larger than 0. We conclude that x; 1 + |w;+| > % (]
Claim 2. z — (K1) - [w;+| < (1- L)' (OPT -
(K—1)|w+]).

Proof of Claim 2. According to the definition of x; and z;,
we have

21 < z1-1 — Xy
1
< (1- E) (21-1 + |w;+|)  (using Claim 1)

S (K — Dw | < (1— %)-(21_1 (K1) w|)

1
< (1= 2)" (0 = (K=1)|wir])
1
= (1 )" (OPT — (K1) ) 0
According to Claim 2, we have
1
2 — (K=1) - |wi | < (1 - ?)K-(OPT — (K=1)-|w;+|)
1
<= (OPT — (K —1)-|w;+),

= GRD = OPT — zg > (1 — %) - (OPT — (K—1)-Jw;+|)

= OPT < e% -GRD + (K—1)|w;-|.

Therefore,
GRD + |w+| GRD + |w+|
OPT + wir| = =5 - GRD + (K—1)fws | + [wir]
_ 1 GRD + |w;+] oL
K ﬁ~GRD+|wZ-+|_K'

Note that the last inequality holds since GRD > 0 (the
initial solution of a zero vector already provides a solution
with an objective value of 0, Line 2, Algorithm B-1), and
m > 1.

The Bound is Tight To show that 7 is a tight bound, we
construct the following example. Let w; = we = ... wg =
W >0, wgs1 = —W, and w; = € > 0 for all the other
targets. For the adjacency matrix, let a;; = 1 for all ¢ €
[N]; aj, k41 = 1foralls = 1,...,K; and a;; = 0 for



all other ¢,j € [N]. Alsolet N > 2K + 1and e < W.
Obviously, the optimal solution is to assign the K resources
to target 1 to K, by which a total weight of (K — 1)-W is
obtained; whereas Algorithm B-1 will pick K targets with
weight ¢, by witch a total weight of K¢ is obtained. Thus

GRD+|w, | K-e+W _ 1
OPTHw,4] — (R-1)WHW — K-

We conclude that Algorithm B-1 provides a tight % ap-
proximation to the WMC when w;+ < 0.




Appendix C

Generalizations of SPEs

In some real-world scenarios, there can be more complex
SPEs where the status of a target is more than simply “cov-
ered” or “uncovered”. In these cases, entries of the adjacen-
cy matrix are allowed to take continuous values between 0
and 1,1i.e., A € [0, 1]"*™. This modification reveals the fac-
t that some factors (such as distance) make a difference on
how well a target can be protected by a resource. The way a
resource allocation determines the protection status, i.e., the
way ®(s) is defined, leads to the following two generaliza-
tions of SPEs.

e SPE-add, which assumes that protections of security re-
sources accumulate, i.e., ®(s) = (¢1(s),...,dn(s)), and

1, if Zj S5 Qj; >= 1

¢ SPE-max, which uses the best protection offered by secu-
rity resources, i.e., ®(s) = (¢1(s),..., ¢n(s)), and

(;52(5) = max; S; * ajj- (C-2)

Note that SPE can be treated as a special case of both SPE-
add and SPE-max. We adopt similar column generation ap-
proach to these two cases, where only the slave problems
need to be reformulated. The u-LP for SPEs also provides
an upper bound for the 7-LPs of SPE-add and SPE-max as
Eqgs. (17)—(20) defines a superset of the feasible marginal
coverage spaces for the same reason as stated in Proposi-
tion 3.

Slave Problem Formulations

SPE-add: We use an auxiliary variable 6; to indicate
whether Zj s; - aj; > 1. The slave problem of SPE-add
is formulated as the following MILP.

max w + w; - G C-3
i > (C-3)
st. ce 0,1, se{0,1}Y, (6;) € {0,1}¥ (C-4)
D si<K (C-5)

~K -0 <c¢ — s < ;

i > G Zj Sj Qi S 0, V’LE[N]

(C-6)
0, <c¢ < 1, Vi € [N] (C-7

When > j55-5i < 1, it must be that #; = 0 (since otherwise
Eq. (C-7) will indicate ¢; = 1, which contradicts the second
ineugality of Eq. (C-6)), and it follows that ¢; = Zj 55 Qjis
similarly, when Zj s;-aj; > 1, wehave ¢; = 1.

SPE-max: Similarly, we introduce auxiliary variables
(0i) Vi,7 € [N], and formulate the slave problem of SPE-

max as the following MILP.

Crsn<aéx7> w+ Zl w; ¢ (C-8)
st. c€[0,1]V, se{0, 1}V, (0;;)€{0,1}*N (C-9)
Zi s; <K (C-10)
0<ci—s;-a; <1—80;, Yi,je[N] (C-11)

Zj 0;; =1, Vi € [N] (C-12)

Eq. (C-12) requires that for each ¢ € [IN], one and only one
0;; equals 1. According to Eq. (C-11), 0;; equals 1 only
when j maximizes s; - aj;, and ¢; = max; s; - a;; is thus
satisfied.



