
Appendix A

Proof of Proposition 2
Proposition 2. The extended greedy approach provides a
(1− 1

e )-approximation to a WMC with a negative weight.

Proof. Let s∗ be the optimal solution of the WMC. Let s0

and s∞ be the optimal solutions of WMC0 and WMC∞ of
the extended greedy approach, respectively. Let c∗=Φ(s∗),
c0=Φ(s0), and c∞=Φ(s∞). Let the target with negative
weight be target i+.

We first prove the following two claims.

Claim 1. If c∗i+ = 0, i.e., target i+ is not covered by the
optimal solution, then s∞ is also optimal to the WMC.

Proof of Claim 1. Since wi+ is replaced with −∞ in
WMC∞, target i+ must not be covered by the optimal so-
lution of WMC∞. Thus c∞i+ = 0. We have

∑
i wi · c∗i =∑

i 6=i+ wi · c∗i and
∑
i wi · c∞i =

∑
i 6=i+ wi · c∞i . Suppose

that s∞ is not optimal to the WMC. We have
∑
i wi · c∗i >∑

i wi · c∞i , and∑
i 6=i+

wi · c∗i + (−∞) · c∗i+ =
∑
i

wi·c∗i >
∑
i

wi·c∞i =

∑
i 6=i+

wi · c∞i + (−∞) · c∞i+ .

This means that s∗ is a better solution to WMC∞ than s∞,
which is a contradiction. �

Claim 2. If c∗i+ = 1, i.e., target i+ is covered by the optimal
solution, then s0 is also optimal to the WMC when wi+ < 0.

Proof of Claim 2. Suppose s0 is not optimal to the WMC.
We have

∑
i wi · c∗i >

∑
i wi · c0i . Thus,∑

i 6=i+
wi · c∗i + wi+ · c∗i+ >

∑
i 6=i+

wi · c0i + wi+ · c0i+

⇒
∑
i 6=i+

wi · c∗i >
∑
i 6=i+

wi · c0i − wi+ · (c∗i+ − c
0
i+)

⇒
∑
i 6=i+

wi · c∗i >
∑
i 6=i+

wi · c0i

The last inequality holds since wi+ · (c∗i+ − c
0
i+) ≤ 0, and it

indicates that s∗ is a better solution to WMC0 than s0, which
is a contradiction. �

Therefore, if c∗i+ = 0, the optimal solution of WMC∞
is optimal to the WMC, and obviously, the objective values
induced by this solution are the same for these two problems
since the two problems only differ in the weight wi+ , which
is however not counted in the solution. Therefore, the greedy
algorithm provides a (1 − 1

e ) approximation to WMC∞ (as
all weights in WMC∞ is non-negative) and furthermore the

WMC, i.e.,

GRD ≥ (1− 1

e
) ·OPT

⇒ GRD + |wi+ | > (1− 1

e
) · (OPT + |wi+ |)

⇒ GRD + |wi+ |
OPT + |wi+ |

> 1− 1

e
.

On the other hand, if c∗i+ = 1, the optimal solution of
WMC0 is optimal to the WMC. In this case, the optimal ob-
jective value of WMC0 is |wi+ | larger than that of the WM-
C, i.e., OPT + |wi+ | = OPT0. For the greedy solution of
WMC0, since target i+ can be either covered or uncovered,
we have GRD = GRD0 − |wi+ | or GRD = GRD0, and
in both cases GRD + |wi+ | ≥ GRD0. Since GRD0 pro-
vides a (1 − 1

e )-approximation to OPT0 (as all weights in
WMC0 is non-negative), we haveGRD0 ≥ (1− 1

e ) ·OPT0.
It follows that

GRD + |wi+ | ≥ (1− 1

e
) · (OPT + |wi+ |)

⇒ GRD + |wi+ |
OPT + |wi+ |

≥ 1− 1

e
.

Therefore, we have in both cases GRD+|wi+ |
OPT+|wi+ |

≥ 1 − 1
e , i.e.,

a (1− 1
e )-approximation.

Proof of Proposition 3
Proposition 3. Let the polytope defined by Eq. (16) be C̄,
and let the polytope of c̄ defined by Eqs. (17)–(20) be C̄′.
Then C̄ ⊆ C̄′.

Proof. Suppose c̄ is a vector in C̄. There must be a mixed
strategy x such that c̄ =

∑
s∈S xs ·Φ(s). Let s̄ =

∑
s∈S xs ·

s. It follows that c̄ and s̄ satisfies Eqs. (17)–(20) since Φ(s)
and s satisfy Eqs. (10)–(13).



Appendix B
A 1

K
-approximation of a Naı̈ve Greedy

Approach
As mentioned in the paper, a naı̈ve greedy approach to deal
with a WMC with a negative weight is to keep track of the
total weight in each step of the main loop (Lines 2–4, Al-
gorithm 1), and choose the maximum record as the final so-
lution. This approach provides a 1

K -approximation to the
WMC. The approach is depicted with Algorithm B-1 be-
low, and the approximation ratio is demonstrated in Propo-
sition B-1.

Algorithm B-1: A naı̈ve greedy approach to deal
with a WMC with negative weights

Input: An adjacency matrix A = 〈aij〉
A set of weights w = 〈wi〉

Output: A pure strategy s∗

1 r ← 0, s← 0, c← 0;
2 r∗ ← 0, s∗ ← 0;

3 for k = 1 to K do
4 î← arg max{i|si=0}

∑
{j | aij=1 and cj=0} wj ;

5 r ← r +
∑
{j | aîj=1 and cj=0} wj ;

6 sî ← 1, c← Φ(s);
7 if r > r∗ then r∗ ← r, s← s∗;

Proposition B-1. Algorithm B-1 provides a 1
K -approximat-

ion to a WMC with a negative weight wi+ < 0, and 1
K is a

tight bound.

Proof. Let OPT denote the objective value of the optimal
solution. Let GRD denote the objective value of of the so-
lution returned by Algorithm B-1. Let xl denote the total
weight of new targets covered by Algorithm B-1 with the lth
set that it picks for all l = 1, . . . ,K. Note that the solution
of Algorithm B-1 may contain less than K sets, say K ′ sets.
Without loss of generality, we let xl = 0 for all l > K ′. Let
yl =

∑l
j=1 xj , i.e., the total weights covered by Algorith-

m B-1 with the first l sets it picks, and let zl = OPT − yl.
We also let y0 = 0 and z0 = OPT .

Claim 1. xl+1 + |wi+ | ≥
zl+|wi+ |

K .

Proof of Claim 1. Suppose the optimal solution chooses k ≤
K sets S1, . . . , Sk. Let Sjl denote the elements in Sj that
is yet not covered when Algorithm B-1 has picked l sets.
Define w(S) =

∑
i∈S wi, i.e., the total weight of targets

covered by any set S.

a) If i+ is not in any of S1
l , . . . , S

k
l , we have w(Sjl ) ≥ 0 for

all j = 1, . . . , k, and
∑k
j=1 w(Sjl ) ≥ w(

⋃k
j=1 S

j
l ) = zl.

Thus there must be one set in S1
l , . . . , S

k
l , say Sjl , such

that w(Sjl ) ≥
zl
k ≥

zl
K , and furthermore w(Sjl ) + |wi+ | ≥

zl+|wi+ |
K .

b) If i+ is in some of S1
l , . . . , S

k
l , we replace the negative

weight with 0 and thus have
∑k
j=1

(
w(Sjl ) + |wi+ |

)
≥

w(
⋃k
j=1 S

j
l ) + |wi+ | = zl + |wi+ |. Similarly, there must

be some Sjl , such that w(Sjl ) + |wi+ | ≥
zl+|wi+ |

k ≥
zl+|wi+ |

K .

Since in the (l + 1)th pick Algorithm B-1 picks the set
with largest total weight of uncovered new targets, we have
xl+1 ≥ w(Sjl ), ∀j = 1, . . . , k. This is also true if the so-
lution of Algorithm B-1 picks less than K sets, since when
the total weight cannot be increased by selecting more sets,
the total weight of uncovered targets in each set must be no
larger than 0. We conclude that xl+1 + |wi+ | ≥

zl+|wi+ |
K . �

Claim 2. zl − (K−1) · |wi+ | ≤
(
1− 1

K

)l · (OPT −
(K−1)·|wi+ |

)
.

Proof of Claim 2. According to the definition of xl and zl,
we have

zl ≤ zl−1 − xl

≤
(
1− 1

K

)
· (zl−1 + |wi+ |) (using Claim 1)

⇒ zl−(K − 1)·|wi+ | ≤
(
1− 1

K

)
·
(
zl−1 − (K−1)·|wi+ |

)
≤
(
1− 1

K

)l·(z0 − (K−1)·|wi+ |
)

=
(
1− 1

K

)l·(OPT − (K−1)·|wi+ |
)

According to Claim 2, we have

zK − (K−1) · |wi+ | ≤
(
1− 1

K

)K ·(OPT − (K−1)·|wi+ |
)

≤ 1

e
·
(
OPT − (K−1)·|wi+ |

)
,

⇒ GRD = OPT − zK ≥
(
1− 1

e

)
·
(
OPT − (K−1)·|wi+ |

)
⇒ OPT ≤ e

e− 1
·GRD + (K−1)·|wi+ |.

Therefore,

GRD + |wi+ |
OPT + |wi+ |

≥ GRD + |wi+ |
e
e−1 ·GRD + (K−1)·|wi+ |+ |wi+ |

=
1

K
· GRD + |wi+ |

e
K·(e−1) ·GRD + |wi+ |

≥ 1

K
.

Note that the last inequality holds since GRD ≥ 0 (the
initial solution of a zero vector already provides a solution
with an objective value of 0, Line 2, Algorithm B-1), and

e
K·(e−1) > 1.

The Bound is Tight To show that 1
K is a tight bound, we

construct the following example. Let w1 = w2 = . . . wK =
W > 0, wK+1 = −W , and wi = ε > 0 for all the other
targets. For the adjacency matrix, let aii = 1 for all i ∈
[N ]; ai,K+1 = 1 for all i = 1, . . . ,K; and aij = 0 for



all other i, j ∈ [N ]. Also let N > 2K + 1 and ε � W .
Obviously, the optimal solution is to assign the K resources
to target 1 to K, by which a total weight of (K − 1)·W is
obtained; whereas Algorithm B-1 will pick K targets with
weight ε, by witch a total weight of K·ε is obtained. Thus
GRD+|wi+ |
OPT+|wi+ |

= K·ε+W
(K−1)·W+W = 1

K .

We conclude that Algorithm B-1 provides a tight 1
K ap-

proximation to the WMC when wi+ < 0.



Appendix C

Generalizations of SPEs
In some real-world scenarios, there can be more complex
SPEs where the status of a target is more than simply “cov-
ered” or “uncovered”. In these cases, entries of the adjacen-
cy matrix are allowed to take continuous values between 0
and 1, i.e., A ∈ [0, 1]n×n. This modification reveals the fac-
t that some factors (such as distance) make a difference on
how well a target can be protected by a resource. The way a
resource allocation determines the protection status, i.e., the
way Φ(s) is defined, leads to the following two generaliza-
tions of SPEs.

• SPE-add, which assumes that protections of security re-
sources accumulate, i.e., Φ(s) =

(
φ1(s), . . . , φN (s)

)
, and

φi(s) =

{∑
j sj · aji, if

∑
j sj · aji < 1

1, if
∑
j sj · aji >= 1

. (C-1)

• SPE-max, which uses the best protection offered by secu-
rity resources, i.e., Φ(s) =

(
φ1(s), . . . , φN (s)

)
, and

φi(s) = maxj sj · aji. (C-2)

Note that SPE can be treated as a special case of both SPE-
add and SPE-max. We adopt similar column generation ap-
proach to these two cases, where only the slave problems
need to be reformulated. The u-LP for SPEs also provides
an upper bound for the t-LPs of SPE-add and SPE-max as
Eqs. (17)–(20) defines a superset of the feasible marginal
coverage spaces for the same reason as stated in Proposi-
tion 3.

Slave Problem Formulations
SPE-add: We use an auxiliary variable θi to indicate
whether

∑
j sj · aji ≥ 1. The slave problem of SPE-add

is formulated as the following MILP.

max
c,s,〈θi〉

w +
∑

i
wi · ci (C-3)

s.t. c ∈ [0, 1]N, s ∈ {0, 1}N, 〈θi〉 ∈ {0, 1}N (C-4)∑
i
si ≤ K (C-5)

−K · θi ≤ ci −
∑

j
sj · aji ≤ 0, ∀i∈[N ]

(C-6)
θi ≤ ci ≤ 1, ∀i ∈ [N ] (C-7)

When
∑
j sj ·aji < 1, it must be that θi = 0 (since otherwise

Eq. (C-7) will indicate ci = 1, which contradicts the second
ineuqality of Eq. (C-6)), and it follows that ci =

∑
j sj ·aji;

similarly, when
∑
j sj · aji ≥ 1, we have ci = 1.

SPE-max: Similarly, we introduce auxiliary variables
〈θij〉 ∀i, j ∈ [N ], and formulate the slave problem of SPE-

max as the following MILP.

max
c,s,〈θij〉

w +
∑

i
wi · ci (C-8)

s.t. c∈[0, 1]N, s∈{0, 1}N, 〈θij〉∈{0, 1}N×N (C-9)∑
i
si ≤ K (C-10)

0 ≤ ci − sj · aji ≤ 1− θij , ∀i, j ∈ [N ] (C-11)∑
j
θij = 1, ∀i ∈ [N ] (C-12)

Eq. (C-12) requires that for each i ∈ [N ], one and only one
θij equals 1. According to Eq. (C-11), θij equals 1 only
when j maximizes sj · aji, and ci = maxj sj · aji is thus
satisfied.


