
Robust Linear Regression Against Training Data Poisoning

Chang Liu

University of California, Berkeley

liuchang@eecs.berkeley.edu

Bo Li

University of California, Berkeley

crystalboli@berkeley.edu

Yevgeniy Vorobeychik

Vanderbilt University

yevgeniy.vorobeychik@vanderbilt.edu

Alina Oprea

Northeastern University

a.oprea@northeastern.edu

ABSTRACT

The effectiveness of supervised learning techniques has made them

ubiquitous in research and practice. In high-dimensional settings,

supervised learning commonly relies on dimensionality reduction

to improve performance and identify the most important factors in

predicting outcomes. However, the economic importance of learn-

ing has made it a natural target for adversarial manipulation of

training data, which we term poisoning attacks. Prior approaches to
dealing with robust supervised learning rely on strong assumptions

about the nature of the feature matrix, such as feature independence

and sub-Gaussian noise with low variance. We propose an inte-

grated method for robust regression that relaxes these assumptions,

assuming only that the feature matrix can be well approximated

by a low-rank matrix. Our techniques integrate improved robust

low-rank matrix approximation and robust principle component

regression, and yield strong performance guarantees. Moreover,

we experimentally show that our methods significantly outper-

form state-of-the-art robust regression both in running time and

prediction error.

1 INTRODUCTION

Machine learning has become widely deployed in a broad array of

applications. An important class of machine learning applications

enable scalable security defenses, such as spam filtering, traffic anal-

ysis, and fraud detection [2, 8, 27]. In these applications, reliability

of the machine learning system is crucial to enforce security against

powerful adversaries, but strong incentives exist to reduce learning

efficacy (e.g., to bypass spam filters).

An important factor in building a reliable machine learning

system is the availability of a collection of high-quality training

samples. To achieve this, practitioners can either rely on public

crowd-sourcing services, such as Amazon Mechanical Turk, or pri-

vate teams to collect training data sets. However, both of these

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

AISec ’17, , November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN ISBN 978-1-4503-5202-4/17/11. . . $15.00

https://doi.org/10.1145/3128572.3140447

approaches also open the door to allow adversaries injecting cor-

rupted (poisoned) data points.

On the other hand, recent research demonstrates that existing

systems are vulnerable in the presence of adversaries who can

manipulate either the training set (i.e., poisoning attacks [28]) or

test data (i.e., evasion attacks [19–21]). Consequently, an important

agenda in both machine learning and security research is to develop

learning algorithms that are robust to data manipulation.

In this work, we focus on designing supervised learning algo-

rithms that are resilient against adversarial poisoning attacks with

formal guarantees. Existing research on robust machine learning

dates back to algorithms for robust PCA [7]. Most of them assume

that a fraction of the underlying dataset is randomly, rather than ad-

versarially, corrupted. Recently, Chen et al. [10] and Feng et al. [14]

considered robust regression in face of adversarial corruption. The

former considers robust linear regression and the latter logistic

regression. However, both make extremely strong assumptions on

feature independence and sub-Gaussian distribution per feature

with vanishing variance (as O(1

n)), rendering them impractical and

severely limiting the scope of associated theoretical guarantees.

We study a common framework for high-dimensional regression,

which proceeds through the following two steps: First, dimension re-

duction, such as PCA, is performed to project the high-dimensional

features into a low-dimensional subspace corresponding to the

space where pristine data can be sampled. Second, linear regression

is performed to learn the model to best characterize the data.

We consider adversaries who might try to poison and mislead

either or both of the two steps, and thus we have two design goals

in mind. First, we must make sure that the dimensionality reduction

step can reliably recover the low-rank subspace; second, the result-

ing regression performed on the subspace can recover sufficiently

accurate predictions. We aim to achieve these goals despite noise in

the dataset and adversarially-poisoned samples. While these prob-

lems have previously been considered in isolation, ours is the first

integrated approach. More significantly, the effectiveness of our

approach relies on far weaker assumptions than prior art (for exam-

ple, we do not need the typical assumption of sub-Gaussian noise

with vanishing variance; see, e.g. [10]), and, as a result, our pro-

posed practical algorithms significantly outperform state-of-the-art

alternatives.

Specifically, we assume that labels y are a linear function of the

true feature matrix X⋆ with additive zero-mean noise. In addition,

https://doi.org/10.1145/3128572.3140447

X⋆ is corrupted with noise, and the adversary subsequently adds

a collection of corrupted rows to the training data. In this model,

our approach involves two parts: first, we develop a novel robust

matrix factorization algorithm which correctly recovers the sub-

space whenever this is possible, and second, a trimmed principle

component regression, which uses the recovered basis and trimmed

optimization to estimate linear model parameters.

Our main contributions are as follows:

• Novel algorithm for robust matrix factorization: We

develop a novel algorithm that reliably recovers the low-

rank subspace of the feature matrix despite both noise

(about which we make few assumptions) and adversarial

examples. We prove that our algorithm is effective if and

only if subspace recovery is possible.

• Novel robust regression algorithmwith significantly
weaker assumptions: In contrast to prior robust regres-

sion work, we do not require either feature independence

or low-variance sub-Gaussian distribution of features. We

prove that our algorithm can reliably learn the low-dimensional

linear model despite data corruption and noise.

• Significant improvement in running time and accu-
racy: We conduct empirical evaluation and demonstrate

that our algorithms significantly outperform prior art in

both running time and prediction efficacy.

2 OVERVIEW

Given a dataset (Xi ,yi)i ∈[1,n], the machine learning problem is to

recover the function f that can best characterize the hidden rela-

tionship between Xi and yi , i.e., f (Xi) and yi are close. Depending
on the values that yi can take, a machine learning problem is either

a classification problem, in which yi can only take a value from a

finite discrete set of “classes", or a regression problem, in which

yi can take values from a continuous space, on which a distance

function is well-defined.

In this work, we focus on the regression problem. In particular we

consider the most fundamental and widely used machine learning

models — linear models. Given a dataset of samples (X,y), where y
is the dependent variable depending on X, a linear model assumes

that y is “close" to β · X with respect to the distance function, for a

set of parametersw .

In this section, we first present the threat model; then we formal-

ize the problem considered in this work; last, we give a road-map

of our approach while explaining the paper organization.

2.1 Threat Model

In this work, we assume that the defender collects a set of training

data, which can be manipulated by the adversary. The defender

thus does not have access to the pristine data before adversarial

manipulation. The defender can choose its defense strategy and

the training approach. But the defender does not know the attack

strategies employed by the adversary.

The attacker has access to the pristine training data, and can

insert new data samples whose volume is a fraction of the pristine

one up to an upper bound. We assume that the attacker knows the

training algorithm used by the defender, and all hyper-parameters

that will be used if any.

The above threat model may be stronger than real-world at-

tackers, since in the real world scenarios, the attacker may not be

able to know the defense strategy employed, or the entire pristine

training data. By assuming such a strong attacker, we can analyze

the worst-case performance of the defense algorithm, and thus all

security guarantees under our model automatically apply to any

weaker threat models based on the Kerckhoffs’s principle [26].

This threat model can also be simulated by a zero-sum Stack-

elberg game, in which the defender chooses the defense strategy

first, and then the attacker chooses the attack strategy based on the

defender’s choice. The defender’s goal is to maximize her utility,

which is the expected serving time accuracy, while the attacker

tries to minimize this utility given a certain budget on the number

of training instances that can be poisoned.

2.2 Problem Setup

We start with the pristine training dataset of n labeled examples,

⟨X⋆,y⋆⟩, which subsequently suffers from two types of corrup-

tion: noise is added to feature vectors, and the adversary adds n1

malicious examples (feature vectors and labels) to best mislead the

learning. We assume that the adversary has full knowledge of the

learning algorithm. The learner’s goal is to learn a model on the

corrupted dataset which is similar to the true model. The feature

space is high-dimensional, and the learner will perform dimension-

ality reduction prior to learning. In particular, we assume that X⋆

is low-rank with a basis B, and we assume that the true model is

the associated low-dimensional linear regression.

Formally, observed training data is generated as follows:

(1) Ground truth: y⋆ = X⋆β
⋆ = Uβ⋆U , where β⋆ is the

true model, β⋆U is its low-dimensional representation, and

U = X⋆B is the low-dimensional embedding of X⋆.

(2) Noise: X0 = X⋆ + N, where N is a noise matrix with

∥N∥∞ ≤ ϵ ; y
0
= y⋆+e , where e is i.i.d. zero-meanGaussian

noise with variance σ .
(3) Corruption: The attacker adds n1 adversarially crafted

examples (xa ,ya) to get ⟨X,y⟩, which maximally skews

prediction performance of low-dimensional linear regres-

sion.

To formally characterize how well the learner performs in this

setting, we define (1) amodel function f (X0,y0
) which is the model

learned on ⟨X⋆,y⋆⟩; (2) a loss function l ; and (3) a threshold function
δ (z) which takes as input z > 1, and is increasing in z. Our metric

is (f , l ,δ)-tolerance:
Definition 1 ((f , l ,δ)-tolerance). We say that learner ℒ is

(f , l ,δ)-tolerant, if for any attacker, and any z > 1, we have

l(ℒ (X, y), f (X0, y0
)) ≤ δ (z)

with probability at least 1 − c1z
−c2 , for some constant c1, c2 > 0.

In our setting, f (X0,y0
) returns β⋆ and l is expected quadratic

loss Ex
[
(x(β

∧
− β⋆))2

]
.

n Number of pristine samples

n1 Number of poisoning samples

n + n1 Total number of training samples

γ The corruption ratio n1/n
β
∧

Estimated parameter vector

β⋆ True parameter vector

β⋆U Low-dimensional representation of β⋆

⟨X⋆,y⋆⟩ Pristine training data

⟨X0,y0
⟩ Examples with Gaussian uncertainty

⟨xa ,ya⟩ Adversarially crafted examples

⟨X,y⟩ Dataset after injecting poisoning instances

B Basis for X⋆

f Learning model

l Loss function

Table 1: Notation Table

For convenience, we let 𝒪 denote the set of (unknown) indices

of the samples in X coming from X0 and 𝒜 = {1, ...,n + n1} − 𝒪
the set of indices for adversarial samples in X. For an index set ℐ
and matrixM ,Mℐ

denotes the sub-matrix containing only rows

in ℐ ; similar notation is used for vectors. We define γ = n1

n as the

corruption ratio, or the ratio of corrupted and pristine data.

All solutions presented in this work assume that n is given. In

practice, we only need estimaten as a lower bound on the number of

pristine samples. When there are n′ pristine samples where n′ > n,
we can simply consider this case as the adversary has n′−n unused

budget during poisoning, and our analysis still holds in such a case.

We summarize the notations used in the paper in Table 1.

2.3 Solution overview

Our goal is to design a learner ℒ to estimate the coefficients β
∧
of

the true model β⋆ using low-dimensional embedding of a high-

dimensional model. We achieve this goal in two steps: (1) recover

the subspace B of X⋆; (2) project X onto B, and estimate β
∧
using

robust principle component regression. The key challenge is that

an adversary can design corrupted data to interfere with both the

first and second steps of the process.

For the first step (Section 3), we develop a robust subspace recov-
ery algorithm which can account for both noise N and adversarial

examples in correctly recovering the subspace of X⋆. We charac-

terize necessary and sufficient conditions for successful subspace

recovery, showing that our algorithm succeeds whenever recovery

is possible. The challenge in the second step (Section 4) is that the

adversary can construct X𝒜
from the same subspace as X⋆, but

with the different distribution of ⟨X𝒜 ,y𝒜 ⟩ from ⟨X⋆,y⋆⟩. To ad-

dress this, we propose the trimmed principle component regression
algorithm to minimize the loss function over only a subset of the

dataset ensuring that the adversary can have only a limited impact

by adding n1 arbitrary corrupted samples without having these

instances being discarded. Our theoretical results demonstrate that

the combined approach is an (f , l ,δ)-tolerant learning algorithm. Fi-

nally, in Section 5, we present an efficient practical implementation

of our methods, which we evaluate in Section 6.

3 ROBUST SUBSPACE RECOVERY

In this section, we discuss how to recover the low-rank subspace of

X⋆ from X. Our goal is to exactly recover the low-rank subspace,

i.e., returning a basis for X⋆. We show sufficient and necessary

conditions for this problem to be solvable, and provide algorithms

when this is possible. As a warmup, we first discuss the noise-

free version of the problem, and then present our results for the

case when noise is added to training data. Proofs of the theorems

presented in this section can be found in Appendix A. Formally, we

consider the following problem:

Problem Definition 1 (Subspace Recovery). Design an algo-
rithm ℒrecovery, which takes as input X, and returns a set of vectors
B which form the basis of X⋆.

3.1 Warmup: Noise-free Subspace Recovery

We first consider an easier version of Problem 1 with N = 0. In

this case, we know that X𝒪 = X⋆. We assume that we know

rank(X⋆) = k (or have an upper bound on it). Below we demon-

strate that there exists a sharp threshold θ on n1 such that when-

ever n1 < θ , we can solve Problem 1 exactly with high probability,

whereas if n1 ≥ θ , Problem 1 cannot be solved. To characterize

this threshold, we define the cardinality of the maximal rank k − 1

subspace MSk−1
(X⋆) as the optimal value of the following problem:

max

ℐ
|ℐ | s.t. rank(Xℐ

⋆) ≤ k − 1

Intuitively, the adversary can insertn1 = n−MSk−1
(X⋆) samples

to form a rank k subspace, which does not span X⋆. The following

theorem shows that in this case, there is indeed no learner that can

successfully recover the subspace of X⋆.

Theorem 1. Ifn1+MSk−1
(X⋆) ≥ n, then there exists an adversary

such that no algorithm ℒrecover solves Problem 1 with probability
greater than 1/2.

On the other hand, when n1 is below this threshold, we can use

Algorithm 1 to recover the subspace of X⋆.

Algorithm 1 Exact recover algorithm for Problem 1 (Noisy-free)

We search for a subset ℐ of indices, such that |ℐ | = n, and
rank(Xℐ) = k

return a basis of Xℐ
.

In fact, we can prove the following theorem.

Theorem 2. If n1 + MSk−1
(X⋆) < n, then Algorithm 1 solves

Problem 1 for any adversary.

Theorems 1 and 2 together give the necessary and sufficient

conditions on when Problem 1 is solvable, and Algorithm 1 provides

a solution. We further show an implication of these theorems on

the corruption ratio γ . We can prove that MSk−1
(X⋆) ≥ k − 1

(see Appendix A). Combining this with Theorem 1, we obtain the

following upper bound on γ .

Corollary 1. If γ ≥ 1 − k−1

n , then Problem 1 cannot be solved.

3.2 Dealing with Noise

We now consider Problem 1 with noise. Before we discuss the

adversary, we first need to assume that the uncorrupted version

is solvable. In particular, we assume that X⋆ is the unique optimal

solution to the following problem:

min

X′
| |X0 − X′ | | (1a)

s.t. rank(X′) ≤ k . (1b)

Unless otherwise mentioned, we use | | · | | to denote the Frobenius

norm. We put no additional restrictions on N except above. Note

that this assumption is implied by the classical PCA problem [13,

15, 16]. We focus on the optimal value of the above problem, which

we term the noise residual, denoted as NR(X0) = N. Noise residual
is a key component to characterize the necessary and sufficient

conditions for the solvability of Problem 1.

Characterization of the defender’s ability to accurately recover

the true basis B ofX⋆ after the attacker adds n1 malicious instances

stems from the attacker’s ability to mislead the defender into think-

ing that some other basis, B̄, better represents X⋆. Intuitively, since

the defender does not know X0, X⋆, or which n1 rows of the data

matrix X are adversarial, this comes down to the ability to identify

the n−n1 rows that correspond to the correct basis (note that it will

suffice to obtain the correct basis even if some adversarial rows are

used, since the adversary may be forced to align malicious exam-

ples with the correct basis to evade explicit detection). As we show

below, whether the defender can succeed is determined by the rela-

tionship between the noise residualNR(X0) and sub-matrix residual,
denoted as SR(X0), which we define as the value optimizing the

following problem:

min

ℐ ,B,U
| |Xℐ

0
− UB̄| | (2a)

s.t. rank(B̄) = k, B̄B̄T = Ik ,X⋆B̄T B̄ , X⋆ (2b)

ℐ ⊆ {1, 2, ...,n}, |ℐ | = n − n1. (2c)

We now explain the above optimization problem. U and B̄ are

(n−n1)×k and k×mmatrixes separately. Here B̄ is a basis which the

attacker “targets”; for convenience, we require B̄ to be orthogonal

(i.e., B̄B̄T = Ik). Since the attacker succeeds only if they can induce

a basis different from the true B, we require that B̄ does not span

of X⋆, which is equivalent to saying X⋆B̄T B̄ , X⋆. Thus, this

optimization problem seeks n − n1 rows of X⋆, where ℐ is the

corresponding index set. The objective is to minimize the distance

between Xℐ
0

and the span space of the target basis B̄, (i.e., | |Xℐ
0
−

UB̄| |).

Algorithm 2 Exact recovery algorithm for Problem 1

Solve the following optimization problem and get ℐ .

minℐ ,L | |Xℐ − L| |
s.t. rank(L) ≤ k,ℐ ⊆ {1, ...,n + n1}, |ℐ | = n

(3)

return a basis of Xℐ
.

To understand the importance of SR(X0), consider Algorithm 2

for recovering the basis of X⋆, B. If the optimal objective value

of optimization problem (2), SR(X0), exceeds the noise NR(X0), it
follows that the defender can obtain the correct basis B using Algo-

rithm 2, as it yields a better low-rank approximation of X than any

other basis. Else, it is, indeed, possible for the adversary to induce

an incorrect choice of basis. The following theorem formalizes this

argument.

Theorem 3. If SR(X0) ≤ NR(X0), then no algorithm can re-
cover the exact subspace of X⋆ with probability greater than 1/2.
If SR(X0) > NR(X0), then Algorithm 2 solves Problem 1.

To draw connection between the noisy case and the noise-free

case, we can view Theorem 1 and 2 as special cases of Theorem 3.

Theorem 4. When N = 0, SR(X0) > NR(X0) = 0 if and only if
n1 +MSk−1

(X⋆) < n.

4 TRIMMED PRINCIPAL COMPONENT
REGRESSION

In this section, we present trimmed principal component regres-

sion (T-PCR) algorithm. The key idea is to leverage the principal

component regression (PCR) approach to estimate β
∧
, but during the

process trimming out those malicious samples that try to deviate

the estimator from the true ones. In the following, we present the

approach, which is similar to the standard PCR approach, though

we do not require computing the exact singular vectors of X⋆.

Assume we recover a basis B of X⋆. Without loss of generality,

we assume that B is an orthogonal basis of k row vectors. Since

B is a basis for X⋆, we assume X⋆ = U⋆B. Then we know that,

by optimization (1), U⋆ = argminU | |X0 −UB| |. We compute U =
argminU | |X−UB| |, and, by definition, we knowU⋆ = U𝒪

. By OLS

estimator, we know that UT = (BBT)−1BXT , and thus U = XBT .

To estimate y = X⋆β+e , we assume βU = Bβ . SinceX⋆ = U⋆B,
we convert the estimation problem of β from a high dimensional

space to the estimation problem of βU from a low dimensional space,

such that y = UβU + e . After estimating for βU
∧

, we can convert

it back to get β
∧
= BβU
∧

. Notice that this is similar to principal

component regression [17].

However, the adversary may corrupt n1 rows in U to fool the

learner to make a wrong estimation on βU
∧

, and thus on β
∧
. To

mitigate this problem, we design Algorithm 3. Intuitively, during

Algorithm 3 Trimmed Principal Component Regression

Input: X,y
(1) Use Algorithm 2 to compute a basis from X, and orthogo-

nalize it to get B
(2) Project X onto the span space of B and get U← XBT

(3) Solve the following minimization problem to get βU
∧

min

βU

n∑
j=1

{(yi − uiβU)2 for i = 1, ...,n + n1}(j) (4)

where z(j) denotes the j-th smallest element in sequence z.

(4) return β
∧
← BβU

∧
.

the training process, we trim out the top n1 samples that maximize

the difference between the observed response yi and the predicted

response uiβU , where ui denotes the i-th row ofU . Since we know

the variances of these differences are small (i.e., recall Section 2,

σ is the variance of the random noise y − xβ⋆), these samples

corresponding to the largest differences are more likely to be the

adversarial ones.

Next, we theoretically bound the prediction differences between

our model and the linear regression model learnt on X⋆,y⋆.

Lemma 1 (TPCR Lemma). Algorithm 3 returns β
∧
, such that for any

real value h > 1 with at least 1 − ch−2 probability for some constant
c , we have

Ex
[
(x(β

∧
− β⋆))2

]
≤ 4σ 2

(
1 +

√
1

1 − γ

)
2

log c (5)

We explain the intuition of this Lemma, and defer the detailed

proof to Appendix B. If an adversary wants to fool Algorithm 3,

it needs to generate samples (ui ,yi), such that the loss function

(yi −uiβU
∧
)2 is among the smallestn. Since for samples fromX⋆,y⋆,

these loss functions are already bounded according to σ , the adver-
sary does not have an ability to significantly skew the estimator. In

particular, if σ = 0, i.e., there is no error while generating y
0
from

X⋆, then the adversary can do nothing when γ < 1, and thus the

estimator is the same as the linear regression’s estimator on the

uncorrupted data.

As an immediate consequence of Lemma 1, we have

Theorem 5. Given δ (c) = 4σ 2

(
1 +

√
1

1−γ

)
2

log c , Algorithm 3 is

(f , l ,δ (c))-tolerant.

5 PRACTICAL ALGORITHMS

Algorithms 1, 2, and 3 require enumerating a subset of indices, and

are thus all exponential time. To make our approach practical, we

develop efficient implementations of Algorithms 2 and 3.

5.1 Efficient Robust Subspace Recovery

Consider the objective function (3). Since rank(L) ≤ k , we can

rewrite L = UBT where U’s and B’s shapes are n × k , andm × k
respectively. Therefore, we can rewrite objective (3) as

min

ℐ ,U,B
| |Xℐ − UBT | | s.t. |ℐ | = n

which is equivalent to

min

U,B

n∑
j=1

{| |xi − uiBT | | for i = 1, ...,n + n1}(j) (6)

where xi andui denote the ith row ofX andU respectively. Solving

Objective 6 can be done using alternating minimization, which

iteratively optimizes the objective forU andBwhile fixing the other.

Specifically, in thewth iteration, we optimize for the following two

objectives:

Uw+1 = argminU | |X −U (Bw)T | |

Algorithm 4 Trimmed Optimization

(1) Randomly assign τi ∈ {0, 1} for i = 1, ...,n + n1, such that∑n+n1

i=1
τi = n

(2) Optimize θ ← argminθ
∑n+n1

i=1
τi l(yi , fθ (xi));

(3) Compute ranki as the rank of l(yi , fθ (x)) in the ascending

order;

(4) Set τi ← 1 for ranki ≤ n, and τi ← 0 otherwise;

(5) Go to 2 if any of τi changes;
(6) return θ .

Bw+1 = argminB

n∑
j=1

{| |xi − uw+1

i BT | | for i = 1, ...,n + n1}(j).

Notice that the second step computes the entire U regardless of the

sub-matrix restriction. This is because we need the entire U to be

computed to update B. The key challenge is to compute Bw+1
in

each iteration, which is, again, a trimmed optimization problem.

The next section presents a scalable solution for such problems.

5.2 Efficient Algorithm for Trimmed
Optimization Problems

Both robust subspace recovery and optimizing for (4) rely on solving

optimization problems in the form

min

θ

n∑
j=1

{l(yi , fθ (xi)) for i = 1, ...,n + n1}(j)

where fθ (xi) computes the prediction over xi using parameter θ ,
and l(·, ·) is the loss function. We refer to such problems as trimmed
optimization problems. It is easy to see that solving this problem is

equivalent to solving

minθ,τ1, ...,τn+n
1

∑n+n1

i=1
τi l(yi , fθ (xi))

s.t. 0 ≤ τi ≤ 1,
∑n+n1

i=1
τi = n

We can use alternating minimization technique to solve this prob-

lem, by optimizing for θ , and τi respectively. We present this in

Algorithm 4. In particular, the algorithm iteratively seeks optimal

arguments for θ and τ1, ...,τn+n1
respectively. Optimizing for θ is

a standard least square optimization problem. When optimizing

τ1, ...,τn+n1
, it is easy to see that τi = 1 if l(yi , fθ (xi)) is among

the largest n; and τi = 0 otherwise. Therefore, optimizing for

τ1, ...,τn+n1
is a simple sorting step. While this algorithm is not

guaranteed to converge to a global optimal, in our evaluation,we

observe that a random start of τ typically yields near-optimal solu-

tions.

6 EVALUATIONS

In this section, we evaluate our approach, i.e., T-PCR. First, we

evaluate the two components, subspace recovery algorithms and

the regression algorithms separately. We employ synthetic datasets

to evaluate both the runtime and the effectiveness of the T-PCR

approach with the previous state-of-the-art. Second, we evaluate

the effectiveness of the entire algorithm using a real-world dataset.

In the following, we first present the setup of our evaluation,

and then present the results for each experiment.

6.1 Setup

We implement all algorithms. All programs are run on aworkstation

with a Intel i7-6800K CPU running at 3.4GHz, 128G memory, and

1TB SSD hard drive. In the following, we explain the baselines used

for comparison, datasets, and poisoning strategies.

6.1.1 Implementation details. We implement our defense strate-

gies based on Algorithm 4 discussed in Section 5.

6.1.2 Baseline. We compare our approach with the state-of-the-

art alternatives in the literature. For the subspace recovery problem,

we compare to two approaches: Chen et al. [11] and Xu et al. [30].

For the end-to-end linear regression problem, we compare our

T-PCR algorithm with the recent robust regression approach [10]

and standard ridge regression algorithm.

6.1.3 Datasets. In this work, we use two classes of datasets to

evaluate our approach: synthetically generated data, and real data.

We explain them below.

Synthetic Datasets. We generate datasets using a routine with

hyper-parameters n, n1, k , andm, which represent the number of

samples in total, poisoned data samples, intrinsic rank of the data,

and the number of features. We setm = 400 for all experiments,

but n, n1, and k can be varied to evaluate different aspects of our

approach.

For a given (k,n), we generate X⋆ as follows: sample two ma-

trices U,B with shape n × k and k ×m respectively. Each element

is sampled independently from a Gaussian distribution 𝒩 (0, 1).
Once a matrix (e.g., U or B) is sampled, we verify that the matrix

has rank k ; or otherwise, we will keep re-sampling the matrix until

the matrix has rank k . Once both U and B are sampled, and we

set X⋆ = UB. We do not add noise to X⋆, unless explicitly stated.

When noise is added, the pristine data is generated as X⋆ + N,
where each element in N is randomly sampled from the Gaussian

distribution 𝒩 (0, 0.01).

Real-world Dataset: malicious domains.We obtained a dataset

including HTTP logs collected from a large enterprise spanning

a period of four months (February, March, July, and August) in

2015. The dataset includes features extracted from the inbound

and outbound HTTP and HTTPs communications captured at the

border of the enterprise by web proxies. Each log event includes

fields from the HTTP headers of the connections, e.g., connection

timestamp, source and destination IP address, contacted domain

and URL, result code, HTTP action, web referrer, user-agent string

and bytes sent and received.

Some filters were applied to the raw datasets to eliminate popu-

lar web sites (domains contacted by more than 50 hosts), domains

involved in advertisement or CDNs, and also domains with only

limited number of connections (less than 5). For the remaining

domains, the dataset includes 91 features typically used in security

applications for flagging malicious communications. The features

extracted from the proxy logs belong to several categories: Com-
munication structure (e.g., number of hosts contacting the domain,

total number of connections, bytes sent and received to the do-

main, number of POST, GET connections); Domain structure (e.g.,
number of levels in the domain, number of sub-domains on the

same second-level domain and domain name length); URL structure
(e.g., number of distinct URLs, URL path length and depth, number

of parameters, number of values per parameter); User-agent string
features (e.g., total number of UAs, popularity of the UA across

the enterprise, ratio of UA across hosts); Web referrer features (e.g.,
total number of referer domains, fraction of connections without

referer); Result-code features (e.g., number of successful and failed

connections); Content-type features (e.g., number of distinct content

types).

At the same time, a number of features extracted from publicly

available external sources are added. They include: WHOIS-related
features (e.g., domain age defined as the time since the domain was

registered, registration validity defined as time until registration

expires), geographical location (number of countries and ASNs of the

IP address of the domain. For labeling the domains in the datasets,

a cloud-based anti-virus engine (VirusTotal) was used. We consider

malicious all domains flagged by at least three anti-virus engines

in VirusTotal. We consider benign the domains with a score of 0

on VirusTotal that are in top 100K according to Alexa ranking.

Domains with score 1 or 2 are considered unknown and removed

from the dataset.

For the evaluation purpose, we use the data from Feburary,

March, and July as the training set, and the data from August as

the test set.

6.1.4 Poisoning Strategy. We employ two poisoning strategies

for attacking the subspace recovery problem and the linear regres-

sion problem respectively. We present them below.

Poisoning strategy for subspace recovery. We evaluate differ-

ent approaches for the subspace recovery problem using only syn-

thetic data. Thus, we assume the adversary has access to X⋆, the

generated pristine data. We generate corruptions X𝒜
also as a

low rank matrix by generating U𝒜
and B𝒜

in the same way as

generating U and B, where U𝒜
has n1 rows.

For B𝒜
, we set the first half of B𝒜

by choosing k/2 rows of X⋆,

and generating the remaining k/2 rows randomly, while ensuring

that B has rank k . We concatenate X⋆ and X𝒜 = U𝒜 B𝒜
to get

the matrix with n +n1 rows, and then shuffle them. In doing so, we

know that X𝒜
shares a common subspace of rank k/2 with X⋆,

but the two subspaces are still different.

Notice that this strategy is designed to trigger the worst case

performance for our algorithms. Later, in the evaluation, we will

demonstrate that although this strategy does not leverage the in-

formation of the baseline algorithms, our approach outperform the

baseline approaches.

Poisoning strategy for linear regression. We employ Xiao et

al.. [28], the state-of-the-art poisoning strategy for linear models

Figure 1: Runtime comparison on the subspace recovery
problem

Figure 2: Runtime comparison on the linear regression prob-
lem

and variants to create the adversarial labels. The basic idea is to

move the data samples along the direction to maximally modify the

learned estimator. This process is repeated multiple iterations until

the learned model cannot predict correctly. We refer the readers

to [28] for more details.

6.2 Subspace recovery

6.2.1 Runtime. We evaluate the runtime of our approach in

comparison with baselines by varying the intrinsic rank k and the

number of pristine data n.

First, we set n = 350,n1 = 50 and vary k from 1 to 20 with the

step to be 1. For each k , we evaluate the runtime of our algorithm

along with the two baselines [11] and [30]. The results are plotted in

Figure 1. Our algorithm is significantly faster than [11] and [30]. The

reason is our algorithm is designed in the alternative minimization

fashion, so that its runtime is linear to the size of thematrix, and also

linear to the intrinsic rank k . On the other hand, both [11] and [30]

employ SVD as its sub-routine, which is very time-consuming. The

SVD algorithm thus dominants the runtime of both [11] and [30].

Notice that the SVD algorithm’s runtime does not rely on k . This is
also the reason why these two baseline approaches’ runtime does

not increase as fast as our approache’s when k is increased.

Figure 3: Effectiveness on the subspace recover task using
the rate of correct identification of corrupted rows.

Second, we fix n1 = 50 and k = 20, and vary n from 1000 to 8000

with the step to be 400. The results of this experiment are presented

in Figure 2. We can observe that as long as the pristine training

samples increase, our algorithm’s runtime increases slowly, while

the two baseline approaches are slowing down dramatically. As we

have explained above, this is due to that the SVD algorithm domi-

nants most of the runtime of [11] and [30], and the SVD algorithm’s

runtime increases dramatically when the total number of rows is

increased.

From these two comparisons, we conclude that our approach is

much more efficient than the baseline approaches and scales well

in terms of both the intrinsic rank and the training data volume.

6.2.2 Effectiveness of the subspace recovery algorithm. We study

the effectiveness of our subspace recovery algorithm using two

metrics. First, we evaluate the percentage of the corrupted rows that

can be identified. Intuitively, if a high percentage of the corrupted

rows can be identified, then the defender can simply remove those

rows to recover the original pristine data.

Second, we evaluate the distance between the recovered matrix

and the pristine matrix on noisy data. The smaller this distance is,

the more effective the recovery algorithm is.

Identification rate of corrupted rows. We compare our algo-

rithm with the two baselines [11, 30] on the identification rate of
corrupted rows. That is the ratio of the of corrupted rows that can

be identified in the total number of rows. We fix k = 10, and vary

n1 from 10 to 200 with a step size 10, and n = 400 − n1 to keep

n + n1 = 400.

The results are presented in Figure 3. Our approach matches the

upper bound of γ provided by Corollary 1. In particular, when n1 =

nγ ≤ n(1 − k/n) = n − k , which means n1 ≤ 190, the identification

rate of our algorithm is 100%. In this case, our approach can perfectly

identify the corrupted rows with 100% accuracy. On the other hand,

when n1 > 190, our approach fails, as expected.

In this experiment, the algorithms used in [30] and [11] are

identical, and we refer to both as Xu et al. [30]. We can observe that

(a) TPCR

(b) Xu et al. [30]

Figure 4: Effectiveness on the robust regression task

the identification rate plummets for n1 ≥ 20, even though only 5%

of the rows are corrupted.

RMSE.We then evaluate our approach’s effectiveness on the noisy

data. In particular, we add noise to the dataset, and employ the

poisoning strategy discussed in Section 6.1.4, which is designed

against our approach. Since [11] cannot handle noise, we only

compare with [30]. We evaluate the distance between the ground

truth matrix and the recovered matrix, i.e., using the root of mean
square (RMSE) metric of the residual matrix. This metric is used

by [30] as well.

Figure 4a and 4b show the RMSE of the difference from recovered

X𝒪
and the true X⋆. We use the grayscale to denote the RMSE:

lighter color corresponds to smaller RMSE. On most test cases

our algorithm successfully recovers the true subspace, while [30]

fails on most cases. Particularly, when n1 < 120, our approach

can completely recover the underlying low-rank matrix. When n1

increases, the condition SR(X0) > NR(X0) might not hold true, and

Theorem 3 says that no algorithm can recover the true subspace

with probability greater than 1/2. However, this theorem does not

prevent our algorithm succeeding with probability < 1/2, which is

why we observe several white spots for high n1.

6.3 Robust regression

In this section, we evaluate the trimmed regression component

(Algorithm 3) in comparison with baseline approaches, i.e., vanilla

Figure 5: Runtime comparison for robust regression

Figure 6: RMSE comparison for robust regression

linear regression and Chen et al. 2013 [10], which is the only alter-

native method for linear regression that is designed to be robust to

the adversarial data poisoning.

We eliminate the effect of dimension reduction, and setm = k =
20 for evaluation purpose. Thus, the generated feature matrix X
is guaranteed to be of full rank. We set n + n1 = 400, and vary n1

from 10 to 200 with a step size 10. In this setting, we choose the

Robust Thresholding Regression algorithm proposed by Chen et al.

2013, which is designed for this setting. We evaluate both runtime

and the effectiveness.

Runtime comparison. The runtime comparison results are pre-

sented in Figure 5. As we can observe, our T-PCR approach’s run-

time is almost the same as Chen et al. 2013’s runtime, though our

approach’s runtime is not as stable as Chen et al. 2013’s. This is be-

cause our approach uses an iterative algorithm, and its convergence

rate relies on both the initial guess on the poisoning data samples,

and the distribution of the poisoning data samples themselves. Thus

different poisoned dataset may result in different runtime. In con-

trast, Chen et al. 2013’s approach is deterministic, and its runtime

does not depend on the data at all, and thus its performance is more

stable.

When compared with vanilla linear regression, both of our ap-

proach and Chen et al. 2013 are around 7× slower. This is reasonable,
since our approach employs the algorithm solving linear regression

in each iteration. Further, we observe that the overall runtime of our

(a) Accuracy

(b) RMSE

Figure 7: Evaluation on a real-world dataset.

approach is at the order of milliseconds. Therefore, we argue that

such a slow-down over vanilla linear regression does not hinder our

approach’s practicality, considering that the matrix factorization

component will take a much longer time.

Effectiveness.We evaluate the effectiveness of the robust regres-

sion algorithms by evaluating the root-of-mean-square (RMSE) of

the prediction using the learned model on test dataset. The results

are presented in Figure 6. As a baseline, we also present results

for standard OLS linear regression with and without adversarial

instances (LR(O+A) and LR(O), respectively). Results are evaluated

using a ground truth test set not used for training. The results

demonstrate that our algorithm significantly outperforms the al-

ternatives. Surprisingly, Chen et al. 2013’s approach results in an

orders of magnitude larger RMSE, thus we omit these results from

the figure. We can observe that our method works nearly as well

as linear regression without adversarial instances!

6.4 End-to-end evaluation on Real World
Dataset

We evaluate our end-to-end approach combining both subspace

recovery algorithms and trimmed regression algorithms over the

real world malicious domain dataset. As explained in Section 6.1.3,

we use three months (Feburary, March, and July) of data for training,

and one month (August) of data for testing. We poison the data

using Xiao et al. [28]. This data set contains 18,000 samples in total.

We choose Ridge regression as our baseline, since in our eval-

uation on synthetic data Chen et al. 2013 did not prove effective.

Further, we include the results using Ridge regression trained on

pristine data as a secure reference. We use Algorithm 4 to imple-

ment the TPCR algorithm.

We first evaluate the accuracy of different algorithms. In fact,

each data sample (a domain) in the dataset corresponds to a value,

called score, from [0, 1] indicating how likely the domain is mali-

cious. We set a threshold to be 0.5, and consider all domains with

scores larger than 0.5 as malicious, or benign otherwise. Then we

can evaluate the accuracy as the percentage of test data that are

classified correctly. The results are presented in Figure 7a. From the

figure, we can observe that when the number of poisoned samples

increases, the Ridge regression approach’s accuracy drops dramat-

ically, i.e., after 4000, i.e., 22%, of the entire training samples are

poisoned. On the other hand, our TPCR approach remains an al-

most perfect accuracy until more than 10000, i.e., 55%, over the

entire datasets are poisoned. We also evaluate the RMSE of differ-

ent algorithms, and present the results in Figure 7b. We observe the

same phenomenon as we study the accuracy of different algorithms.

Therefore, we conclude that our approach provides more resilience

than existing approaches.

We also observe in Figure 7b that TPCR’s performance on RMSE

is worse than the baseline when there are more than 10,000 number

of rows corrupted. Notice that in such cases, the poisoning samples

are over 50% of the training dataset. In this case, the TPCR algorithm

will be fooled to think the poisoning samples, which constitute the

majority, represent the “pristine data". In this case, as we prove

in Section 3, it is impossible to recover the true space. Note that

poisoning over half of the training data is also less realistic in real

application scenarios.

7 RELATEDWORK

Poisoning Attack. In this big data era, adversarial machine learn-

ing has drawn a lot of attention [4, 12, 19–21]. With the increasing

popularity of crowdsourcing systems, poisoning attacks, where

adversaries are able to manipulate the training data to fulfill their

malicious goals, have raised severe security problems. Biggio et

al. has pioneered the research of optimizing malicious data-driven

attacks for kernel-based learning algorithms such as SVM [6]. The

key technique for such optimization based attack strategy is to

approximately compute implicit gradients of the solution of an opti-

mization problem based on the first-order KKT conditions. Similar

poisoning attack techniques have also been generalized to other

widely used learning algorithms, such as Lasso regression [29],

topic modeling [22], and autoregressive models [1]. A general algo-

rithmic framework for generating poisoning attack instances on

various machine learning models is analyzed in [23]. Recently, poi-

soning attack against deep neural networks has also been proposed

to attack the substitute model via influence function [18]. In their

work, the attack is restricted to only the last layer instead of the

whole network. Therefore, how to conduct poisoning attack on

deep networks in an end-to-end manner still remains open.

Robust Algorithm. Robust PCA is widely used as a statistical tool

for data analysis and dimensionality reduction that is robust to i.i.d.

noise [7]. However, these methods cannot deal with “malicious”

corruptions, where the sophisticated adversaries can manipulate

rows from the subspace of the true feature matrix. In contrast, our

approach handles both noise and malicious corruption. Recently,

robust learning for several learning models, such as linear and lo-

gistic regression have also been proposed [10, 14]. The limitation

of these approaches is their assumption that the feature matrix is

sub-Gaussian with vanishing variance, and that features are inde-

pendent. Similarly, a provably robust algorithm has been proposed

to remove random noise based on conditional correlation among

data points [9]. Our approach, in contrast, only assumes that the

true feature matrix (prior to corruption) is low rank. Yan et al.
proposed an outlier pursuit algorithm to deal with the matrix com-

pletion problem with corruptions [31], and a similar algorithm is

applied by Xu et al. to deal with the noisy version of feature matrix

[30]. However, these methods only consider the matrix recovery

problem and are not scalable. A more scalable algorithm based on

the alternating minimization approach was recently proposed by

Rodriguez et al. [24]; however, this method does not consider data

noise or corruption. A number of heuristic techniques have also

been proposed for poisoning attacks [3, 5, 25] for other problems,

such as robust anomaly detection source identification.

8 CONCLUSION

This paper considers the poisoning attack for linear regression

problem with dimensionality reduction. We address the problem

in two steps: 1) introducing a novel robust matrix factorization

method to recover the true subspace, and 2) novel robust principle

component regression to prune adversarial instances based on the

basis recovered in step (1). We characterize necessary and suffi-

cient conditions for our approach to be successful in recovering

the true subspace, and present a bound on expected prediction loss

compared to ground truth. Experimental results suggest that the

proposed approach is extremely effective, and significantly outper-

forms prior art.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for the helpful comments. This

material is in part based upon work supported by the National

Science Foundation under Grant No. TWC-1409915, CNS-1640624,

IIS-1526860, IIS-1649972, and CNS-1238959, ONR under No. N00014-

15-1-2621, ARO under No. W911NF-16-1-0069, NIH under No. UH2

CA203708-01 and R01HG006844, and Berkeley Deep Drive (BDD).

Any opinions, findings, and conclusions or recommendations ex-

pressed in this material are those of the author(s) and do not neces-

sarily reflect the views of the National Science Foundation.

REFERENCES
[1] Scott Alfeld, Xiaojin Zhu, and Paul Barford. 2016. Data Poisoning Attacks against

Autoregressive Models. In AAAI.

[2] Ion Androutsopoulos, Georgios Paliouras, Vangelis Karkaletsis, Georgios Sakkis,

Constantine D Spyropoulos, and Panagiotis Stamatopoulos. 2000. Learning

to filter spam e-mail: A comparison of a naive bayesian and a memory-based

approach. arXiv preprint cs/0009009 (2000).
[3] Mauro Barni and Benedetta Tondi. 2014. Source distinguishability under cor-

rupted training. In Information Forensics and Security (WIFS), 2014 IEEE Interna-
tional Workshop on. IEEE, 197–202.

[4] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug

Tygar. 2006. Can machine learning be secure?. In Proceedings of the 2006 ACM
Symposium on Information, computer and communications security. ACM, 16–25.

[5] Battista Biggio, Igino Corona, Giorgio Fumera, Giorgio Giacinto, and Fabio

Roli. 2011. Bagging classifiers for fighting poisoning attacks in adversarial

classification tasks. In Multiple Classifier Systems. Springer, 350–359.
[6] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against

support vector machines. In ICML.
[7] Emmanuel J Candès, Xiaodong Li, Yi Ma, and JohnWright. 2011. Robust principal

component analysis? Journal of the ACM (JACM) 58, 3 (2011), 11.
[8] Philip K Chan and Salvatore J Stolfo. 1998. Toward Scalable Learning with

Non-Uniform Class and Cost Distributions: A Case Study in Credit Card Fraud

Detection.. In KDD, Vol. 1998. 164–168.
[9] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. 2016. Learning from

untrusted data. arXiv preprint arXiv:1611.02315 (2016).
[10] Yudong Chen, Constantine Caramanis, and Shie Mannor. 2013. Robust

High Dimensional Sparse Regression and Matching Pursuit. arXiv preprint
arXiv:1301.2725 (2013).

[11] Yudong Chen, Huan Xu, Constantine Caramanis, and Sujay Sanghavi. 2011.

Robust Matrix Completion and Corrupted Columns. In Proc. of ICML 11.
[12] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, Deepak Verma, et al. 2004. Ad-

versarial classification. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 99–108.

[13] Carl Eckart and Gale Young. 1936. The approximation of one matrix by another

of lower rank. Psychometrika 1, 3 (1936), 211–218.
[14] Jiashi Feng, Huan Xu, Shie Mannor, and Shuicheng Yan. 2014. Robust logistic re-

gression and classification. In Advances in Neural Information Processing Systems.
253–261.

[15] HaroldHotelling. 1933. Analysis of a complex of statistical variables into principal

components. Journal of educational psychology 24, 6 (1933), 417.

[16] Ian Jolliffe. 2002. Principal component analysis. Wiley Online Library.

[17] Ian T Jolliffe. 1982. A note on the use of principal components in regression.

Applied Statistics (1982), 300–303.
[18] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via

influence functions. arXiv preprint arXiv:1703.04730 (2017).
[19] Bo Li and Yevgeniy Vorobeychik. 2014. Feature cross-substitution in adversarial

classification. In Advances in Neural Information Processing Systems. 2087–2095.
[20] Bo Li and Yevgeniy Vorobeychik. 2015. Scalable Optimization of Randomized

Operational Decisions in Adversarial Classification Settings.. In AISTATS.
[21] Daniel Lowd and Christopher Meek. 2005. Adversarial learning. In Proceedings

of the eleventh ACM SIGKDD international conference on Knowledge discovery in
data mining. ACM, 641–647.

[22] Shike Mei and Xiaojin Zhu. 2015. The Security of Latent Dirichlet Allocation. In

AISTATS.
[23] Shike Mei and Xiaojin Zhu. 2015. Using Machine Teaching to Identify Optimal

Training-set Attacks on Machine Learners. In AAAI.
[24] Paul Rodriguez and Brendt Wohlberg. 2013. Fast principal component pursuit via

alternating minimization. In Image Processing (ICIP), 2013 20th IEEE International
Conference on. IEEE, 69–73.

[25] Benjamin IP Rubinstein, Blaine Nelson, Ling Huang, Anthony D Joseph, Shing-

hon Lau, Satish Rao, Nina Taft, and JD Tygar. 2009. Antidote: understanding

and defending against poisoning of anomaly detectors. In Proceedings of the 9th
ACM SIGCOMM conference on Internet measurement conference. ACM, 1–14.

[26] Claude E Shannon. 1949. Communication theory of secrecy systems. Bell Labs
Technical Journal 28, 4 (1949), 656–715.

[27] Salvatore Stolfo, David W Fan, Wenke Lee, Andreas Prodromidis, and P Chan.

1997. Credit card fraud detection using meta-learning: Issues and initial results.

In AAAI-97 Workshop on Fraud Detection and Risk Management.
[28] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and

Fabio Roli. 2015. Is Feature Selection Secure against Training Data Poisoning?. In

Proceedings of the 32nd International Conference on Machine Learning (ICML-15).
1689–1698.

[29] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and

Fabio Roli. 2015. Is Feature Selection Secure against Training Data Poisoning. In

ICML.
[30] Huan Xu, Constantine Caramanis, and Sujay Sanghavi. 2010. Robust PCA via

outlier pursuit. In Advances in Neural Information Processing Systems. 2496–2504.
[31] Ming Yan, Yi Yang, and Stanley Osher. 2013. Exact low-rank matrix completion

from sparsely corrupted entries via adaptive outlier pursuit. Journal of Scientific
Computing 56, 3 (2013), 433–449.

A PROOF OF THEOREMS ABOUT ROBUST
MATRIX FACTORIZATION

In this appendix, we present the proofs of theorems in Section 3.

Since this section does not involve y, we will omit y without loss

of clarity.

A.1 Theorem 1

Proof of Theorem 1. We prove by contradiction. Assume we

have a learner ℒrecover, can solve Problem 1 with probability more

than 1/2. We want to show that there exist two different spaces

of rank-k , and one input X such that ℒrecover(X1) should return

both two spaces with a probability > 1/2, which is impossible. In

the following, we construct such two spaces. Particularly, we will

discuss how adversary can manipulate the matrix.

The adversary can choose ℐ which maximize |ℐ | such that

while rank(Xℐ
⋆) ≤ k − 1. We know |ℐ | = MSk−1

(X⋆) ≥ n − n1.

This means that |𝒪 | − |ℐ | ≤ n1.

Suppose v1, ...,vk−1
be a set of basis for the row space of Xℐ

⋆ .

The adversary then choose a vector v ′k which is orthogonal to X⋆.

Then we know the span space of V ′ = {v1, ...,vk1
,v ′k } is different

fromX⋆. Then the adversary draws n1 samples from the span space

ofV ′, and insert them into X⋆ to form X. Moreover, we denote X′⋆
to be a matrix of |ℐ | + n1 rows, so that the first |ℐ | rows are Xℐ

⋆ ,

and the rest n1 rows sampled by the adversary. Therefore, we know

X′⋆ is also a submatrix of X, and we know that there are at most

|𝒪 | − |ℐ | ≤ n1 rows in X not coming from X′⋆.

In doing so, we know that X is constructed by corrupting X⋆.

On the other hand, we can also see X as the result of corrupting X′⋆
by inserting |𝒪 | − |ℐ | ≤ n1 rows. Therefore, ℒrecover(X⋆) should
return both X⋆ and X′⋆ with a probability greater than 1/2, which
is impossible. Therefore, our conclusion holds true. □

A.2 Theorem 2

Proof of Theorem 2. We show that Algorithm 1 recovers the

subspace of X⋆ exactly. Assume B is returned by Algorithm 1 over

X. We only need to show that B is a basis of X⋆. By Algorithm 1,

we know that B is a basis of n rows in ℐ of X. Since we know

any adversary can corrupt at most n1 rows, thus |ℐ ∩ 𝒜 | ≤ n1.

Therefore, by combining the assumption n1 +MSk−1
(X⋆) < n, we

know that

|ℐ ∩ 𝒪 | = |ℐ | − |ℐ ∩𝒜 | ≥ n − n1 > MSk−1
(X⋆) (7)

Therefore, we know B is a basis for Xℐ∩𝒪
⋆ . By the definition of

MSk−1
(X⋆) and inequality (7), we know that

rank(Xℐ∩𝒪
⋆) = k

Therefore, we know that Xℐ∩𝒪
⋆ is exactly the same subspace as

X⋆, and thus B is the basis of X⋆. □

A.3 Corollary 1

Lemma 2. MSk−1
(X⋆) ≥ k − 1

Proof. We can choose the ℐ = {1, ...,k − 1}, then we have

rank(Xℐ
⋆) ≤ k − 1. Therefore, MSk−1

(X⋆) ≥ |ℐ | = k − 1. □

Now, we can prove Corollary 1.

Proof of Corollary 1. Given
n1

n = γ ≥ 1 − k−1

n , we have

n1 + (k − 1) ≥ n

Combining MSk−1
(X⋆) ≥ k − 1, we know

n1 +MSk−1
(X⋆) ≥ n1 + (k − 1) ≥ n

Applying Theorem 1, we can conclude this corollary. □

A.4 Theorem 3

Proof of Theorem 3. The proof of this theorem is similar to

the proof of Theorem 1 and 2. First, when SR(X0) ≤ NR(X0), the
adversary can constructX such that two subspaces should be recov-

ered with a probability greater than 1/2. Particularly, we assume

ℐ ,U,B minimize objective 2, and thus SR(X0) = | |Xℐ
0
− UB| |.

The adversary samples n1 rows Xcorrupt from the span space of B,
which does not belong to the span of X⋆. We add a small noise over

Xcorrupt to get X1, such that (1) Xcorrupt minimize | |X1 −Xcorrupt | |;
and (2) | |X1 − Xcorrupt | | = NR(X0) − SR(X0). Then the adversary

insert X1 into X0 to get X. In this case, we know that X⋆ optimizes

its distance fromX0, while the [Xℐ
⋆ ;Xcorrupt] optimizes its distance

from [Xℐ
0

;Xcorrupt], where we use [A;B] to denote the concatena-

tion of rows from A and B respectively. Further, by definition, we

know both of these two distances is NR(X0). Therefore, the learner
should recover fromX bothX⋆ and [Xℐ

0
;Xcorrupt]with probability

greater than 1/2. This is impossible! Therefore the first part of the

theorem holds true.

For the second part, we follow the proof of Theorem 2 verbatim,

and present the difference. We show that Algorithm 2 recovers the

subspace of X⋆ exactly. Assume B is returned by Algorithm 2 over

X. We only need to show that B is a basis of X⋆. By Algorithm 2,

we know that B optimizes its pan distance from a subset of n rows

in X, which is denoted as ℐ . Since we know any adversary can

corrupt at most n1 rows, thus |ℐ ∩𝒜 | ≤ n1. Therefore, we know

that

|ℐ ∩ 𝒪 | = |ℐ | − |ℐ ∩𝒜 | ≥ n − n1 (8)

If B is not a basis of X⋆, which means that X⋆BTB , X⋆, then we

know that the distance between the span space of B and Xℐ∩𝒪

is greater than SR(X0) > NR(X0). This is impossible, since Algo-

rithm 2 guarantees that this distance should be no greater than

NR(X0). Contradiction! Therefore the second part of the theorem

holds true. □

A.5 Theorem 4

Proof of Theorem 4. When N = 0, we know that SR(X0) >
NR(X0) if and only if SR(X0) , 0. This means that for any |ℐ | =
n − n1, Xℐ

⋆ = UB implies that X⋆BTB = X⋆ (condition (2b)),

which implies that rank(Xℐ
⋆ |) = k for all ℐ . Therefore, we know

MSk−1
(X⋆) < n − n1, which concludes this theorem. □

B PROOF OF TPCR LEMMA

We present the proof of TPCR Lemma 1 below.

Proof. Assume βU
∧

is the solution for this optimization problem.

We assume the adversary wants to induce the regression system to

compute βU
∧

. In this case, he has to corrupt γn rows in U . W.L.O.G.

we can assume 𝒪 = {1, ...,n1}. We denote β⋆U = Bβ⋆. Since X⋆ =

U⋆B, we know that

y − X⋆β
⋆ = y − U⋆β

⋆
U

Since βU
∧

optimize Eq (4), we assume (yi−uiβU
∧
)2 are the smallest

n values for i ∈ {1, ...,n}.
Then we have

n1∑
i=1

(yi − uiβU
∧
)2 +

n∑
i=n1+1

(yi − uiβU
∧
)2 ≤

n+n1∑
i=n1+1

(yi − uTi β
⋆
U)

2

Therefore we have

n∑
i=n1+1

(yi − uiβU
∧
)2 ≤

n+n1∑
i=n1+1

(yi − uiβ⋆U)
2

(9)

Further, we know

n∑
i=n1+1

(yi − uiβU
∧
)2

=

n∑
i=n1+1

(
(yi − uiβ⋆U) + (uiβ

⋆
U − uiβU

∧
)
)

2

≥
n∑

i=n1+1

{
(yi − uiβ⋆U)

2 + (uiβ⋆U − uiβU
∧
)2

−2|yi − uiβ⋆U | · |uiβ
⋆
U − uiβU

∧
|
}

=

n∑
i=n1+1

(yi − uiβ⋆U)
2 +

n∑
i=n1+1

(ui (β⋆U − βU
∧
))2

−2

(n∑
i=n1+1

|ui (β⋆U − βU
∧
)| · |yi − uiβ⋆U |

)
(10)

According to Cauchy-Schwarz inequality, we have(∑n
i=n1+1

|ui (β⋆U − βU
∧
)| · |yi − uiβ⋆U |

)
2

≤
(∑n

i=n1+1
(ui (β⋆U − βU

∧
))2

)
·
(∑n

i=n1+1
(yi − uiβ⋆U)

2

)

We assume C =
√∑n

i=n1+1
(ui (β⋆U − βU

∧
))2), then, we have

−2

(n∑
i=n1+1

|ui (β⋆U − βU
∧
)| · |yi − uiβ⋆U |

)
≥ −2

√√√(n∑
i=n1+1

(ui (β⋆U − βU
∧
))2

)
·
(n∑
i=n1+1

(yi − uiβ⋆U)2
)

= −2C
√
Σni=n1+1

e2

i

Substituting this inequality into (10) and combining with (9), we

have

n+n1∑
i=n1+1

e2

i ≥
n∑

i=n1+1

e2

i +C
2 − 2C

√
Σni=n1+1

e2

i

By simple rearrangement, we have

C2 − 2C

√√√ n∑
i=n1+1

e2

i ≤
n+n1∑
i=n+1

e2

i

Since we know yi − uiβ⋆U ∼ 𝒩 (0,σ), we know that for any

parameter h > 1, we have Pr(ei ≤ 2σ
√

logh) ≥ 1 − ch−2
for some

constant c . Therefore, we know, with high probability (at least

1 − ch−2
), we have

C2 − 2

√
n − n1C(2σ

√
logh) ≤ C2 − 2C

√√ n∑
i=n+1

e2

i

≤
n+n1∑
i=n+1

e2

i

≤ n1(2σ
√

logh)2

Therefore, we have(
C − 2σ

√
n − n1

√
logh

)
2

≤ n(2σ
√

logh)2

and thus

C ≤ 2σ

(√
n +
√
n − n1

)√
logh

Therefore, we know√∑n
i=n1

| |ui (β⋆U − βU
∧
)| |2

n − n1

≤ 2σ

(
1 +

√
1

1 − γ

)√
logh

We notice the right hand side of the above inequality does not

depend on n,n1. Therefore, we take n → +∞, and we know that

n − n1 = (1 − γ)n → +∞, and apply the law of large numbers, we

have √
Eu

[
(u(β⋆U − βU

∧
))2

]
≤ 2σ

(
1 +

√
1

1 − γ

)√
logh

where left hand side is the same as

√
Ex

[
(x(β

∧
− β⋆))2]. Then the

conclusion of Lemma 1 is a simple rearrangement of the above

inequality. □

	Abstract
	1 Introduction
	2 Overview
	2.1 Threat Model
	2.2 Problem Setup
	2.3 Solution overview

	3 Robust Subspace Recovery
	3.1 Warmup: Noise-free Subspace Recovery
	3.2 Dealing with Noise

	4 Trimmed Principal Component Regression
	5 Practical Algorithms
	5.1 Efficient Robust Subspace Recovery
	5.2 Efficient Algorithm for Trimmed Optimization Problems

	6 Evaluations
	6.1 Setup
	6.2 Subspace recovery
	6.3 Robust regression
	6.4 End-to-end evaluation on Real World Dataset

	7 Related Work
	8 Conclusion
	References
	A Proof of Theorems about Robust Matrix Factorization
	A.1 Theorem 1
	A.2 Theorem 2
	A.3 Corollary 1
	A.4 Theorem 3
	A.5 Theorem 4

	B Proof of TPCR Lemma

